Notiz / Note

Synthesis and Structure of the New α-Aminosilanolate [LiOSiMe₂(NMe₂)]₆

Gerhard E. Herberich*, Thomas P. Spaniol, and Andreas Fischer

Institut für Anorganische Chemie, Technische Hochschule Aachen, D-52056 Aachen, Germany

Received March 14, 1994

Key Words: Silanolate / Aminosilanolate

Lithium (dimethylamino)dimethylsilanolate (1) is obtained from trimeric dimethylsiloxane and lithium dimethylamide in quantitative yield. In the crystal 1 is a hexamer [LiOSi $Me_2(NMe_2)]_6$ with crystallograpic C_{3i} (S_6 , $\bar{3}$) symmetry. The molecule of **1** consists of a hexagonal prismatic (LiO)₆ core and an *N*,O-chelating anion.

Organolithium structural studies are currently of intense interest^[1]. One α -aminosilanolate, the sterically protected tetrameric compound [LiOSitBu₂(NMe₂)]₄, has been described previously^[2]. While working with lithium dimethylamide in THF solution we observed the formation of a new α -aminosilanolate [LiOSi-Me₂(NMe₂)]₆ (1) from the amide and the silicone grease used^[3]. More rationally 1 may be prepared in a simple one-pot reaction of trimeric dimethylsiloxane with lithium dimethylamide. This method should be suitable for the preparation of a wide range of α -aminosilanolates.

2 (Me₂SiO)₃ + 6 LiNMe₂ \rightarrow [LiOSiMe₂(NMe₂)]₆

The crystal structure of 1 has been determined by X-ray diffraction. A hexameric aggregate was found with crystallographic C_{3i} $(S_6, \bar{3})$ symmetry. The core is a hexagonal prism built from lithium and oxygen atoms (Figure 1). It consists of a stack of two $(Li-O)_3$ rings with alternating long and short Li–O bond distances [203.2(4) and 185.9(4) pm] with the longer and presumably strained bond in the four-membered LiOSiN chelate ring. Li–O bonds of intermediate length [197.2(4) pm] interconnect the two $(Li-O)_3$ rings within the stack. Thus the overall structure and the Li–O bond lengths pattern conform to the ring-stacking principle^[1a,1b].

Hexagonal prismatic cores have been found, for instance, for the alkoxides (LiOCMe₂Ph)₆^[4a] and (NaOtBu)₆ (together with a nonamer)^[4b] and for the silanolate (LiOSiMe₂Np)₆ (Np = α -Naphthyl)^[3b]; in these examples steric protection stabilizes alkalimetal ions in a three-coordinate environment. In **1** the more favourable four-coordination can be achieved by internal coordination of the anion. To the best of our knowledge [LiOSitBu₂(NH₂)]₄ is the only other structurally characterized lithium α -aminosilanolate^[2]. In this case, the bulky tertiary butyl groups enforce a smaller ring size which results in the formation of a tetramer.

This work was generously supported by *Volkswagen-Stiftung* and *Fonds der Chemischen Industrie.*

Experimental

Reactions were carried out under nitrogen by means of conventional Schlenk techniques. – NMR: Unity-500 (¹H 500 MHz; ¹³C 125.7 MHz; ²⁹Si 99.3 MHz), Varian.

Figure 1. Molecular structure of 1, probability of thermal ellipsoids 50%, hydrogen atoms omitted. Dashed atoms are generated from asymmetric unit by rotation $C_3(y, z, x)$, double-dashed atoms by rotation $C_3^2(z, x, y)$, and starred atoms by inversion i(-x, -y, -z). Interatomic distances: Li-O 203.2(4), Li-O' 185.9(4), Li-O''* 197.2(4), Li-N 232.5(4), Li-Li'* 258.4(5), Li-Li' 319.4(5), Si-O 159.7(1), Si-N 172.6(2), Si-C3 187.3(3), Si-C4 186.3(3), N-C1 148.2(5), N-C2 144.6(4) pm. Angles: O-Li-O' 128.5(2), O-Li-O''* 93.9(2), O'-Li-O''* 99.5(2), O-Li-N 74.3(1), Li-O-Si 94.6(1), O-Si-N 105.2(1), Li-N-Si 81.5(1)°

Lithium (Dimethylamino)dimethylsilanolate (1): In a typical procedure, a Schlenk tube is purged with dry, oxygen-free nitrogen and charged with THF and with stoichiometric amounts of halide-free (!) lithium dimethylamide and trimeric dimethylsiloxane. The reaction mixture is stirred for 4 h; removal of the volatiles in vacuo yields 98% of a white, infusible solid, m.p. >250°C. Single crystals of 1 can be obtained by recrystallization from hexane. $^{-1}$ H NMR (500 MHz, [D₈]THF): $\delta = 2.41$ (s, NMe₂), -0.13 (s, SiMe₂). $^{-13}$ C{¹H} NMR ([D₈]THF): $\delta = 38.79$ (NMe₂), 1.04 (SiMe₂). $^{-29}$ Si NMR ([D₈]THF): $\delta = -16.46. - C_{24}H_{72}$ Li₆N₆O₆Si₆ (750.8): calcd. C 38.38, H 9.66; found C 38.31, H 9.70.

Crystal Structure Determination: Colourless single crystals of **1** were obtained by crystallization from hexane. $C_{24}H_{72}Li_6N_6O_6Si_6$, molecular weight 750.8 g/mol, rhombohedral, $R\bar{3}c$ (No. 167), a =1337.6(1) pm, $\alpha = 91.171(6)^\circ$, V = 2.3818(3) nm³, Z = 2, $d_{calc} =$ 1.047 g/cm³, μ (Cu- K_{α}) = 19.43 cm⁻¹. – Diffractometer CAD4

Chem. Ber. 1994, 127, I619-1620 © VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1994 0009-2940/94/0909-1619 \$ 10.00+.25/0

(Enraf-Nonius), Cu- K_{α} radiation (graphite monochromator, $\lambda =$ 154.18 pm), crystal size $0.4 \times 0.4 \times 0.4$ mm³, ambient temperature, ω scans (5 < Θ < 70°). All data were corrected for Lorentz and polarisation effects, using the SDP system of programs^[5]. Of the 3827 data collected, 3497 were unique, 1045 with intensities $I \ge$ $2\sigma(I)$ and only those were used in the structure solution and refinement. The structure was solved by direct methods using the SHELX-86 program^[6] and difference fourier maps. Positions for all hydrogen atoms were found, but idealized to C-H = 98 pm, keeping the geometry. In the full-matrix least-squares refinement hydrogen atoms were treated as riding with isotropic thermal parameters of $B_{\rm H} = 1.3 \cdot B_{\rm C}$. Convergence was obtained for 73 parameters with the agreement factors R = 0.058 and $R_w = 0.069$, using statistical weights $w = 1/\sigma^2(F_0)$. The final difference fourier map showed a maximum of residual electron density of $0.502 \cdot 10^{-6}$ e/pm^{3[7]}.

vol. I, p. 1-47. - ^[1e] M. Veith, Chem. Rev. **1990**, 90, 3-16. - ^[1f] D. Seebach, Angew. Chem. **1988**, 100, 1685-1715; Angew.

- Chem. Int. Ed. Engl. 1988, 27, 1624–1654. O. Graalmann, U. Klingebiel, W. Clegg, M. Haase, G. M. Shel-drick, Angew. Chem. 1984, 96, 904–905; Angew. Chem. Int. Ed. Engl. 1984, 23, 891-893.
- ^[3a] M. R. Churchill, C. H. Lake, S.-H. L. Chao, O. T. Beachley, Jr., J. Chem. Soc., Chem. Commun. **1993**, 1577–1578. ^[3b] T. [3]
- A. Bazhenova, R. M. Lobkovskaya, R. P. Shibaeva, A. E. Shibova, J. Organomet. Chem. 1987, 330, 9–15.
 ^[4a] M. H. Chisholm, S. R. Drake, A. A. Naiini, W. E. Streib, Polyhedron 1991, 10, 805–810. ^[46] J. E. Davies, J. Kopf, E. Weise, A. A. M. Sant, 2022. ſ41
- Weiss, Acta Crystallogr, Sect. B, 1982, 38, 2251–2253.
 B. A. Frenz, The ENRAF-Nonius CAD4-SDP a Real-Time System for Concurrent X-Ray Data Collection and Crystal [5] Structure Determination in Computing in Crystallography (Eds.: H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld, G. C. Bassi, Delft University Press, Delft, 1978; SDP-PLUS, Version 1.1 (1984) and VAXSDP, Version 2.2 (1985).
 G. M. Sheldrick, SHELXS-86, Program for Crystal Structure
- Solution, Göttingen, 1986.
- [7] Further details of the crystal structure analysis are available on request from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, on quoting the depository number CSD-400718, the names of the authors, and the journal citation.

[100/94]

 ^[1] For recent reviews see: ^[1a] R. E. Mulvey, Chem. Soc. Rev. 1991, 20, 167-209. - ^[1b] K. Gregory, P. v. R. Schleyer, R. Snaith, Adv. Inorg. Chem. 1991, 37, 47-142. - ^[1c] E. Weiss, Angew. Chem. 1993, 105, 1565-1587; Angew. Chem. Int. Ed. Engl. 1993, 32, 1501-1523. - ^[1d] P. G. Williard in Compr. Org. Synth. (Ed. J. D. M. Treet, J. Fleming). Person Press. Oxford 1991 (Eds.: B. M. Trost, I. Fleming), Pergamon Press, Oxford, 1991,